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ABSTRACT
Background: Gold nanoparticles [GNPs] are significant scientific achievements which are effectively employed in medicine. 
However, in vivo biological impact of these particles should be assessed to investigate their safety on human health.
Aim: Study of the biological effect of different gold nanoparticles doses on the liver of adult female rats exploring the novel 
mechanisms of gold nanoparticles induced liver damage.
Materials and Methods: Forty adult female rats were separated into one control group [Group I] and two GNPs-treated 
groups [Group II; 40μg/kg and Group III; 400μg/kg]. Specimens of the liver were taken to be processed for the light and 
electron microscopy in addition to immunohistochemical staining technique for the p53 protein, tumor necrosis factor alpha 
[TNF-α] and B-cell lymphoma 2 [Bcl-2]. 
Results: Administration of gold nanoparticles to adult female rats caused various histological deterioration in the liver 
depending on the dose. Hepatocytes showed vacuolated cytoplasm and pyknotic nuclei.  Dilation and congestion of the central 
veins, blood sinusoids, hepatic artery and portal vein were seen. Disrupted endothelial layer was observed in some central 
veins. An apparent increase in kupffer cells and mononuclear cellular infiltration were observed. The immunohistochemical 
results demonstrated a significant increase in p53 and TNF-α and decrease in Bcl-2 immunoreactions. Ultrastructurally, 
swollen or damaged mitochondria, dilated rough endoplasmic reticulum [RER] and apparent glycogen depletion were 
observed in the hepatocytes.
Conclusion: Gold nanoparticles induced various dose dependent histological deterioration, inflammation and apoptosis in 
the liver of adult female rats. So, it should be given cautiously to females to avoid liver damage.
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INTRODUCTION                                                                     

     Nanotechnology is effectively implemented in diverse 
fields that employ nanoparticles (NPs) in many medical 
devices and food industries[1]. Nowadays, the application 
of NPs as a diagnostic or therapeutic method has proved 
success[2]. Nanoparticles are mainly used for gene delivery, 
cancer treatment, photothermal therapy and imaging 
techniques[3,4]. The effective medical possibility of NPs was 
attributed to their chemical stability, biocompatibility and 
ease of synthesis[5]. They are effectively employed in the 
release of peptides[6], antibiotics[7], amino acids[8], anticancer 
drugs[9], antioxidants[10], glucose[11], nucleic acids[12] and 
isotopes[13]. 

The physicochemical NPs characters result in a marked 
reactivity with various tissues. So, despite of their significant 

useful applications, they may have serious health hazards[14]. 
Nanoparticles can damage the biological membranes and 
can be accumulated in diverse organs as liver, spleen and 
kidney[15,16]. There are different reports about in vivo bad 
impact of these particles[17,18]. The undesired impacts are 
correlated to their size which is a main factor for reactive 
oxygen species {ROS} synthesis[2]. 

Gold nanoparticles (GNPs) have assorted routes to get 
in the body as skin touch, ingestion and inhalation[19]. The 
oral one possessed a highest toxicity in experimental rats[20]. 
They are characterized by wide systemic distribution that is 
inversely correlated with their sizes[21,22]. The smaller particles 
offered wide systemic distribution to brain, kidney, lungs, 
liver, heart, spleen, thymus and reproductive organs[23,24]. 
GNPs can also damage genes leading to inflammation and 
cell death[25,26].
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The balance between the successful medical potency 
and adverse effects of GNPs were not sufficiently tested[27]. 
Former studies tested the in vitro influence of GNPs. 
However, more in vivo biological studies are needed to test 
the wanted safety of GNPs[28,29,30].

Sex variations were formerly studied with other 
nanoparticles. It was found that the kidneys of female 
animals displayed a higher NPs concentration than the other 
sex group[31,32]. Although most researchers have focused 
on testing the impact of GNPs on liver of male animals[33], 
their influence on females should be tested due to their 
vulnerability.

Therefore, this research purposed to study the biological 
effect of different gold nanoparticles doses on the liver of 
female rats exploring the novel mechanisms of GNPs induced 
liver injury by utilizing assorted histological techniques.

MATERIALS AND METHODS                                                

Chemicals
Gold Nanospheres: Turkevich protocol was used for 

GNPs preparation through the standard citrate reduction 
to give mono-disperse spherical GNPs {10–15 nm in 
diameter[34,35].

Study design
The animal work followed the guidelines for animal 

use of the Ethics Committee for Scientific Research of the 
National Research Center, Egypt. Forty adult female albino 
rats {140-160 grams} were available in the experiment. They 
were subjected to a standard 12-h light/12-h dark cycle in 
suitable cages with proper ventilation before and throughout 
the work. They had free access to a balanced laboratory diet 
as well as water ad libitum.

The rats were arranged into
1.	 Group I (control group): 20 rats were subdivided into 

2 equal subgroups: the first (subgroup IA) received 
no treatment and the second (subgroup IB) received 
1 ml distilled water orally daily for 14 days.

2.	 Group II (low dose group): 10 rats received 40μg 
gold nanoparticles/kg {in 1ml distilled water} orally 
daily for 14 days[36].

3.	 Group III (high dose group): 10 rats received 400μg 
gold nanoparticles/kg {in 1ml distilled water} orally 
daily for 14 days[36].

At the end of the experiment, rats were anesthetized by 
giving intraperitoneal pentobarbital injection {40 mg/kg}[37]. 
The liver was rapidly dissected and specimens from the right 
lobe were handled for light and electron microscopy.

Light microscopic study
Liver specimens were fixed in neutral buffered formalin 

{10%}, washed, dehydrated in ascending grades of ethanol, 
cleared in xylol and embedded in paraffin. Then, liver 
sections {5μm thickness} were stained with haematoxylin 
and eosin [H&E] to study the histological features[38].

For immunohistochemical staining, liver sections (5μm 
thickness) were dewaxed, rehydrated, and washed with 
phosphate buffered saline {PBS}. The liver sections were 
incubated with the following primary antibodies: (rabbit 
polyclonal antibody against p53 protein, ab131442, Abcam, 
Cambridge, USA, 1:100 dilution); (rabbit polyclonal 
antibody against tumor necrosis factor-alpha (TNF-α), 
ab6671, Abcam, 1/100 dilution); (rabbit polyclonal antibody 
against B-cell lymphoma2 (Bcl-2), Abcam, ab59348, at 
a dilution of 1/100) overnight in a humid chamber at 4°C 
and then incubated for 60 minutes with biotinylated goat                
anti-rabbit IgG at room temperature. Sections were 
incubated with a streptavidin–biotin–horseradish peroxidase 
complex for another 60 minutes. The immunoreactivity 
was visualized by 3,3′-diaminobenzidine (DAB) hydrogen 
peroxide (a chromogen). Sections were also counterstained 
with Mayer’s haematoxylin. The negative control sections of 
the liver were prepared without using any of the mentioned 
primary antibodies[39]. Positive control for p53 was human 
breast carcinoma. Positive control for TNF-α was human 
tonsil. Positive control for Bcl-2 was human colon carcinoma. 
The liver cells with brown nuclei were p53-immunopositive 
cells. The liver cells with brown cytoplasm were TNF-α and 
Bcl-2 immunopositive cells.

For transmission electron microscope, specimens of 
the liver were processed according to the commonly used 
routine protocol. They were embedded in epoxy resin 
mixture. Ultrathin sections (80-90nm) were stained with 
uranyl acetate as well as lead citrate[40]. JEOL-JEM-100 
transmission electron microscope was employed to check the 
grids {at Electron Microscopic Unit of Tanta University}.

Morphometric study
Immunohistochemical evaluation occurred by employing 

an image analysis system {Leica Q (500), MC program} at 
Central Research Lab. at Tanta Faculty of Medicine, Tanta 
University. Ten non-overlapping fields were examined 
in each slide for area percentage {area %} of the positive 
reaction of p53 (X1000), TNF-α and Bcl-2 (X400) {in DAB-
stained sections}.

Statistical analysis
The area percentage (%) of p53, TNF- α and Bcl-2 

immunoreactions were subjected to one-way analysis of 
variance {ANOVA} as well as Tukey’s procedure. Statistical 
package for social sciences statistical analysis software 
{SPSS Inc., version 11.5, USA} was utilized. The mean 
values as well as the standard deviation values {Mean ± SD} 
for all groups were calculated. Probability values {P values} 
< 0.05 and < 0.001 were significant and highly significant 
values respectively[41].

RESULTS                                                                                       

No deaths were observed and there was zero mortality 
index in all groups during this study.

1-H&E results
Group I (control group): All subgroups showed the 
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same features of the liver parenchyma. The sections showed 
branching cords of hepatocytes that radiated from a central 
vein. The hepatocyte cords were separated by the blood 
sinusoids which were lined by endothelial cells as well as 
Kupffer cells. The polyhedral hepatocytes had granular 
acidophilic cytoplasm and most of them had large rounded 
vesicular nuclei with prominent nucleoli while some were 
binucleated (Figure 1). There were portal areas containing 
connective tissue stroma, branches of the portal vein and bile 
duct (Figure 2).

Group II (low dose group): The examination revealed 
some structural changes in a few areas in the liver. These 
were in the form of dilated congested central veins and 
vacuolated hepatocytes. Some vacuolated cells showed 
rounded vesicular nuclei, while others showed shrunken 
deeply stained nuclei (Figures 3,4). Other hepatocytes 
appeared with homogenous acidophilic cytoplasm and 
vesicular nuclei with mononuclear cellular infiltration 
near the congested central vein (Figure 5). Another 
observation was the apparent increase in kupffer cell number                                                                                           
(Figures 3,5). Regarding the portal areas dilated congested 
branch of the portal vein, dilated branches of the hepatic 
artery and mononuclear cellular infiltration were noticed 
(Figure 6). 

Group III (high dose group): Severe hepatic structural 
changes were detected in this group. Markedly dilated and 
congested central veins and blood sinusoids were seen 
with disrupted endothelial layer of some central veins                            
(Figures 7,8,9). Moreover, many hepatocytes appeared with 
markedly vacuolated cytoplasm and contained shrunken 
deeply stained nuclei (Figure 10). Some hepatocytes showed 
homogenous acidophilic cytoplasm and vesicular nuclei 
with mononuclear cellular infiltration near the congested 
central vein. There was also an apparent increase in 
Kupffer cells (Figure 11). The portal areas showed dilated 
congested branches of the portal vein and hepatic artery with 
mononuclear cellular infiltration (Figure 12). 

2-Immunohistochemical results
P53 immnunostaining: p53-immunostained liver sections 

of Group I (control group) displayed a weak positive brown 
nuclear reaction in a few hepatocytes (Figure 13). In Group 
II (low dose group), a moderate positive nuclear reaction for 
p53 was detected in some cells (Figure 14), while in Group III 
(high dose group), a strong positive nuclear immunoreaction 
for p53 was observed in many cells (Figure 15).  

TNF-α immunostaining: Immunostained liver sections 
of Group I (control group) exhibited an extremely weak 
positive brown immunoreaction to TNF-α (Figure 16), 
while sections from Group II (low dose group) expressed a 
moderate positive brown immunoreaction in the cytoplasm 
of some hepatocytes (Figure 17). Moreover, sections of 

Group III (high dose group) expressed a strong positive 
reaction in many hepatocytes (Figure 18). 

Bcl-2 immunostaining: Immunostained liver sections of 
Group I (control group) displayed a strong positive reaction 
to Bcl-2 in the form of brown coloration of the cytoplasm 
of many hepatocytes (Figure 19), while sections from 
Group II (low dose group) expressed a moderate positive 
immunoreaction in many hepatocytes (Figure 20). Moreover, 
sections of Group III (high dose group) expressed a weak 
positive reaction to Bcl-2 in many hepatocytes (Figure 21).

3-Electron microscopic results
Ultrastructurally, examination of Group I (control 

group) revealed polyhedral hepatocytes containing rounded 
euchromatic nuclei with prominent nucleoli. The cytoplasm 
contained numerous mitochondria that appeared variable in 
size as well as in shape. The mitochondria were associated 
with rough endoplasmic reticulum (RER). Rosettes 
of glycogen granules were observed in the cytoplasm                    
(Figure 22).

In Group ІI (low dose group), the ultrastructural 
examination revealed a few hepatocytes with irregular 
shrunken nuclei, peripheral heterochromatin and vacuolated 
cytoplasm (Figure 23). On the other hand, a few hepatocytes 
showed swollen distorted mitochondria, dilated smooth 
endoplasmic reticulum, dilated RER and perinuclear 
space. Small lipid droplets appeared in the cytoplasm.                             
(Figures 24,25).

Group III (high dose group) showed severe ultrastructural 
changes affecting many hepatocytes. Markedly vacuolated 
cytoplasm with apparent glycogen depletion was observed in 
many hepatocytes. Many irregular shrunken heterochromatic 
nuclei were observed (Figures 26,27). Numerous swollen 
disrupted mitochondria were noticed with destroyed cristae 
which were associated with dilated RER and perinuclear 
space (Figures 28,29). The gold nanoparticles were clearly 
seen in the cytoplasm (Figure 26).

4-Morphometric & statistical results (Table 1)
The area percentage {area %} of p53 immunoreaction 

of hepatocytes displayed a significant elevation in Group 
II compared to Group I. Moreover, Group III possessed a 
highly significant elevation compared to Group I.

The area % of TNF-α immunoreaction of hepatocytes 
in Group II expressed a significant rise compared to Group 
I. Moreover, Group III displayed a highly significant rise 
compared to Group I.

The area % of Bcl-2 expression of hepatocytes in Group 
II displayed a significant reduction compared to Group I. 
Moreover, Group III showed a highly significant reduction 
compared to Group I.



492

EFFECT OF GOLD NANOPARTICLES ON LIVER OF FEMALE RATS

Fig. 1: A photomicrograph showing the normal hepatic architecture with 
a central vein (*) and cords of hepatocytes (arrow head) having granular 
cytoplasm and large rounded vesicular nuclei and separated by the blood 
sinusoids (arrow). Notice the binucleated hepatocytes (wavy arrow). The 
inset shows the lining endothelium (e) and kupffer cells (k) of the blood 
sinusoids (Group I, H&E X 400, Inset X1000).

Fig. 2: showing the portal areas (curved arrow), branches of the portal vein 
(arrow) and bile duct (wavy arrow). (Group I, H&E X 400). 

Fig. 3: showing dilated congested central veins (*) and vacuolated 
hepatocytes with rounded vesicular nuclei (arrow head). The inset shows 
an apparent increase in kupffer cells (arrow) (Group II, H&E X 400, Inset 
X1000).

Fig. 4:  showing congested central veins (*) and vacuolated hepatocytes 
with shrunken deeply stained nuclei (arrow head). Notice a few destroyed 
cells (curved arrow).  (Group II, H&E X 400).

Fig. 5:  showing some hepatocytes with homogenous acidophilic cytoplasm 
and vesicular nuclei (arrow head) with mononuclear cellular infiltration 
(curved arrow) near the congested central vein (*). The inset shows an 
apparent increase in kupffer cells (arrow) (Group II, H&E X 400, Inset 
X1000).

Fig. 6:  showing a dilated congested branch of the portal vein (arrow), 
dilated branches of the hepatic artery (arrow head) and mononuclear cellular 
infiltration (curved arrow). (Group II, H&E X 400).
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Fig. 7: showing markedly dilated and congested central veins (*) and 
marked cytoplasmic vacuoles of the surrounding hepatocytes (arrow head). 
(Group III, H&E X 400).

Fig. 8: showing disrupted endothelial layer (arrow) of a central vein (*). 
(Group III, H&E X 400).

Fig. 9: showing markedly dilated and congested blood sinusoids (arrow). 
(Group III, H&E X 400).

Fig. 10: showing hepatocytes with markedly vacuolated cytoplasm and 
shrunken deeply stained nuclei (arrow head) and mononuclear cellular 
infiltration (curved arrow). (Group III, H&E X 400).

Fig. 11: showing hepatocytes having homogenous acidophilic cytoplasm 
and vesicular nuclei (arrow head) with mononuclear cellular infiltration 
(curved arrow) near the congested central vein (*).The inset shows an 
apparent increase in kupffer cells (arrow). (Group III, H&E X 400, Inset 
X1000).

Fig. 12:  showing dilated congested branches of the portal vein (arrow) and 
hepatic artery (arrow head) with mononuclear cellular infiltration (curved 
arrow). (Group III, H&E X 400).
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Fig. 13: showing a weak positive brown nuclear immunoreaction for p53 
(arrow) in a few hepatocytes. (Group I, p53-immunostaining, X1000). 

Fig. 14: showing a moderate positive nuclear p53 immunoreaction (arrow) 
in some hepatocytes. (Group II, p53-immunostaining, X1000).

Fig. 15: showing a strong positive nuclear immunoreaction for p53 (arrow) 
in many hepatocytes. (Group III, p53-immunostaining, X1000).

Fig. 16: showing an extremely weak positive brown immunoreaction to 
TNF-alpha. (Group I, TNF-alpha immunostaining, X400).

Fig. 17: showing a moderate positive immunoreaction to TNF-alpha (brown 
coloration) in the cytoplasm of some hepatocytes (arrow). (Group II, TNF-
alpha immunostaining, X400).

Fig. 18: showing a strong positive immunoreaction to TNF-alpha in 
the cytoplasm of many hepatocytes (arrow). (Group III, TNF-alpha 
immunostaining, X400)
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Fig. 19: showing a strong positive immunoreaction to Bcl-2 (brown 
coloration) in the cytoplasm of many hepatocytes (arrow). (Group I, Bcl-2 
immunostaining, X400)

Fig. 20: showing a moderate positive immunoreaction to Bcl-2 in the 
cytoplasm of many hepatocytes (arrow). (Group II, Bcl-2 immunostaining, 
X400).

Fig. 21: showing a weak positive immunoreaction to Bcl-2 in the cytoplasm 
of many hepatocytes (arrow). (Group III, Bcl-2 immunostaining, X400)

Fig. 22: An electron micrograph of a hepatocyte showing euchromatic 
nucleus (N), numerous mitochondria (arrow), rough endoplasmic reticulum 
(arrow head) and rosettes of glycogen granules (wavy arrow). (Group I, X 
11700)

Fig. 23: An electron micrograph of a hepatocyte showing irregular shrunken 
nucleus having peripheral heterochromatin (N), vacuolated cytoplasm 
(curved arrow) and swollen mitochondria (arrow). (Group II, X 11700)
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Fig. 24: An electron micrograph of a hepatocyte showing swollen distorted 
mitochondria (arrow), dilated smooth endoplasmic reticulum (wavy arrow) 
and dilated RER (arrow head). Notice the small cytoplasmic vacuoles 
(curved arrow). (Group II, X 11700)

Fig. 25: An electron micrograph of a hepatocyte showing small lipid 
droplets (wavy arrow) and swollen mitochondria having destroyed cristae 
(arrow). Notice the dilated RER (arrow head) and perinuclear space (curved 
arrow). (Group II, X 11700) 

Fig. 26: An electron micrograph of a hepatocyte showing markedly 
vacuolated cytoplasm with apparent glycogen depletion (*) and destroyed 
mitochondria (arrow). Notice the intracellular gold nanoparticles (arrow 
head). (Group III, X 11700)

Fig. 27: An electron micrograph of a hepatocyte showing irregular 
shrunken nucleus with peripheral heterochromatin (N). Notice the markedly 
vacuolated cytoplasm (*). (Group III, X11700)
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Fig. 28: An electron micrograph of parts of three hepatocytes showing 
swollen mitochondria with destroyed cristae (arrow) and marked 
cytoplasmic vacuoles (*). (Group III, X 11700)

Fig. 29: An electron micrograph of a hepatocyte showing markedly dilated 
RER (arrow head) and perinuclear space (curved arrow). (Group III, X 
11700)

Table 1: illustrates area % {Mean ± SD} of p53, TNF-α and Bcl-2 
immunoreactions

             Groups        

Parameters

Group I
(control group)

Group II
(low dose group)

Group III
(high dose group)

Mean area 
% of p53 3.283±0.122 3.477±0.225* 5.998±0.400**

Mean area 
% of TNF-α 8.934±0.510 11.16±2.01* 16.59±1.80**

Mean area 
% of Bcl-2 27.738±0.833 26.623±0.707* 19.967±0.925**

*P < 0.05 and **P< 0.001 are significant and highly significant values 
versus

DISCUSSION                                                                               

Gold nanoparticles are successfully applied for medical 
diagnosis and various treatment protocols such as tumor 
diagnosis and cancer therapy as well as targeted and effective 
delivery of many drugs[3,4]. Their biological toxicity to male 
animals had been investigated in many research works[33,42]. 
Females are a vulnerable group because nanoparticles could 
influence their reproductive activity as well as the fetal 
development[43]. So, their influence on female animals should 
be investigated. Therefore, this work purposed to investigate 
the biological effects of different gold nanoparticles doses on 
the liver of female rats exploring novel mechanisms of GNPs 
induced liver injury.

In this study, histological evaluation of liver sections 
obtained from GNPs treated female rats revealed significant 
morphological changes such as vacuolated cytoplasm and 
pyknotic nuclei of hepatocytes, dilation and congestion 
of the central veins, blood sinusoids, hepatic artery and 
portal vein. Disrupted endothelial layer was observed in 
some central veins. An apparent increase in kupffer cells 
and mononuclear cellular infiltration were also found. The 
immunohistochemical results displayed a significant and/
or a highly significant elevation in p53 and TNF-α and 
reduction in Bcl-2 immunoreactions. Ultrastructurally, 
swollen mitochondria, dilated RER and apparent glycogen 
depletion were observed. These findings were supported 
by other researchers who stated that liver damage could be 
caused by GNPs induced oxidative stress. Reactive oxygen 
species reacts with DNA resulting in DNA damage and 
apoptosis[44,45,46]. 

Gold nanoparticles induced liver damage might also arise 
from vacu¬olar degeneration as well as necrosis resulting 
from ROS. It was reported that GNPs exposure could induce 
inflammation, lipid change and vein intima disruption. 
Moreover, they could cause enhanced absorption of water 
by hepatocytes and vacuolization in addition to chronic 
inflammatory damage and fibrosis[47].
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In our study, the liver cells showed cytoplasmic 
vacuolation which was interpreted by being as a cloudy 
swelling and indicates an acute liver injury. This was 
attributed to cell membrane damage by these particles 
causing water and Na+ influx. This results in cellular 
swelling, lysosomal damage and cytoplasmic degeneration. 
This finding may be also attributed to fatty changes which 
results from lipid peroxidation and organelle damage with 
detachment of the cytoplasmic lipoprotein[48]. 

One of the observed finding was appearance of liver cells 
with highly homogenous acidophilic cytoplasm. This is an 
initial sign of the hepatic necrotic changes before dissolution 
of the cell nucleus. This was attributed to mitochondria and 
endoplasmic reticulum swelling in addition to damage of 
lysosomes due to oxidative stress on the liver cells through 
glutathione depletion[49]. 

Another observation was a prominent and an apparent 
increase in the number of the Kupffer cells. GNPs activate 
the phagocytic activity of these cells to remove nanoparticles. 
This finding may be a defense mechanism of detoxification 
and may contribute to hepatic oxidative stress[50]. Moreover, 
it may be considered as a compensatory response in order 
to clear cellular debris. These cells can also stimulate the 
immune cells to get rid of any foreign substances and also to 
help in the regeneration[51].

Moreover, GNPs induced nuclear changes mainly 
pyknosis and nuclear irregularity. It is considered as a sign 
for cell death and denotes a liver injury associated with 
protein metabolism disturbances[17,48].

Inflammatory cellular infiltration of the hepatic tissue 
and congestion of the blood vessels were seen in the present 
study and may be due to the interaction of GNPs with the 
hepatic interstitial tissue. This interferes with the antioxidant 
defense mechanisms initiating the inflammatory response. 
Moreover, there was also disruption of the endothelial layer 
of some central veins that was caused by endothelial cell 
damage and vascular stress induced by GNPs[48].

Ultrastructurally, the study showed that GNPs exerted 
variable deleterious effects on the hepatocyte structure in 
the form of degeneration and swelling of the mitochondria 
and RER in addition to the nuclear changes. GNPs-induced 
oxidative stress may result in mitochondrial dysfunctions 
as a decline of ATP synthesis and an increased ROS. So, 
mitochondrial affection could disturb the cellular metabolism 
and affect cell viability inducing apoptosis and necrosis[52]. 
Moreover, GNPs caused endoplasmic reticulum swelling 
which is attributed to loss of protein synthesis and the liver 
detoxification function. Endoplasmic reticulum change is 
considered an early indicator for GNPs toxicity[53]. GNPs can 
also reach the nucleus and affect the genetic material leading 
to destruction of their morphology and damage of DNA[54]. 
Glycogen depletion upon GNPs exposure was a prominent 
finding and was attributed to oxidative stress induced by the 
nanoparticles on hepatocytes[55,56].

The immunohistochemical study displayed a significant 
dose-dependent elevation in TNF-α expression in GNPs 

treated rats. TNF-α is a pro-inflammatory cytokine and its 
up regulation denotes an inflammation mediated by GNPs 
exposure. TNF-α plays an essential role in the inflammatory 
processes in addition to its immunomodulatory functions. 
Moreover, the oral intake of these nanoparticles causes their 
interaction with the gut wall lymphocytes or macrophages 
which are moved out with their immune products to other 
body tissues[57]. In addition, production of cytokines is being 
a natural immunological defense activity to any foreign 
particles. However, if these cytokines act effectively for 
long time, it will generate excessive ROS with more cellular 
injury[58].

P53 protein is a tumor suppressor protein that acts as a 
nuclear transcription factor to activate genes of apoptosis. 
P53 plays a pro-apoptotic role because it can initiate 
apoptosis when DNA damage happens. Therefore, the 
significant elevation in p53 nuclear expression upon GNPs 
administration could suggest DNA damage and this may be 
the mechanism of GNPs induced liver injury. p53 protein 
can be also transferred to the mitochondria liberating other 
pro-apoptotic agents as Fas and Bax. In addition, our results 
revealed also a significant reduction in Bcl-2 expression upon 
GNPs administration. Bcl-2 is an anti-apoptotic protein that 
prevents the mitochondrial liberation of the pro-apoptotic 
agents inhibiting apoptosis. The reduced Bcl-2 expression 
was attributed to the increase in the expression of p53 or to 
ROS accumulation and activation of the oxidizing enzymes 
by the nanoparticles leading to mitochondrial damage and 
cell death. So, the modulation of the expression of these 
apoptotic associated proteins p53 and Bcl-2 in the present 
study may explain the possible mechanisms involved in 
GNPs induced liver injury[59,60].

CONCLUSION AND RECOMMENDATIONS                       

This study revealed that GNPs caused dose dependent 
histological deterioration, and various degrees of 
inflammation and apoptosis in the liver of female rats. The 
study also suggests the possible participation of TNF-α, p53 
and Bcl-2 in the development of GNPs induced liver damage. 
So, high doses of GNPs should be avoided. Moreover, GNPs 
should be given cautiously to females as they are a particular 
vulnerable group. Further clinical studies on human are also 
needed to confirm the results of the animal studies.
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الملخص العربى

التأثير البيولوجى للجرعات المختلفة لجسيمات الذهب النانوية على كبد إناث الجرذان: 
دراسة هستولوجية و هستوكيميائية مناعية

أميرة عدلى كساب1، خالد أحمد أحمد مصطفى1، محمد حسن رجب2، آية محمد حسن رجب3 

1قسم الهستولوجيا وبيولوجيا الخلايا, كلية الطب,جامعة طنطا,مصر

2قسم التشريح ,كلية الطب,جامعة طنطا,مصر

3قسم الصحة الإنجابية وتنظيم الأسرة,المركز القومى للبحوث,الجيزة,مصر

المقدمة: تعتبر جسيمات الذهب النانوية من الإنجازات العلمية الهامة التي تم توظيفها بنجاح في الطب. ومع ذلك, يجب 
تقييم التأثير البيولوجي لهذه الجسيمات فى الجسم الحى للتحقق من سلامتهم على صحة الإنسان. 

الجرذان  إناث  كبد  على  النانوية  الذهب  لجسيمات  المختلفة  للجرعات  البيولوجى  التأثير  دراسة  البحث:  من  الهدف 
وإستكشاف آليات جديدة مسببة لتلف الكبد الناجم عن جسيمات الذهب النانوية. 

الأولى(  )المجموعة  ضابطة  واحدة  مجموعة  إلى  البالغة  الجرذان  إناث  من  أربعين  تقسييم  تم  البحث:  وطرق  مواد 
؛  الثالثة  والمجموعة  كجم   / ميكروجرام   40 ؛  الثانية  )المجموعة  النانوية  الذهب  بجسيمات  معالجتين  ومجموعتين 
400 ميكروجرام / كجم(. تم أخذ عينات الكبد وتجهيزها  للمجهر الضوئى والإلكترونى بالإضافة إلى تقنية صبغات 
هستوكيميائية مناعية لبرتين ب p53( 53( وبروتين عامل نخر الورم ألفا )TNF-α( و بروتين ورم الغدد الليمفاوية2 

 .)2-Bcl(
النتائج: إعطاء جسيمات الذهب النانوية لإناث الجرذان البالغة سبب تدهور نسيجي فى الكبد  حسب الجرعة. أظهرت 
الخلايا الكبدية فجوات فى السيتوبلازم وأنوية صغيرة وداكنة. شوهد تمدد واحتقان الأوردة المركزية ، والجيوب الدموية 
،و الشريان الكبدي والوريد البابي. ولوحظ تقطع فى الطبقة المبطنة لبعض الأوردة المركزية. كما لوحظ زيادة واضحة 
في خلايا كوبفر وتسلل خلوي أحادي النواة. وقد أظهرت الدراسة الهستوكيميائية المناعية  زيادة ذات دلالة إحصائية 
في التفاعل المناعى ل p53 و TNF-α وإنخفاض في Bcl-2. وعلى مستوى التركيب الدقيق فقد لوحظ تورم أوتلف 

الميتوكوندريا وإتساع الشبكة الإندوبلازمية الخشنة وإستنزاف الجليكوجين.
الإستنتاج:  جسيمات الذهب النانوية سببت تدهور نسيجى معتمدة على الجرعة و إلتهاب وموت الخلايا المبرمج فى كبد 

إناث الجرذان. لذا، يجب إعطاؤه بحذر للإناث لتجنب تلف الكبد.


